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COMMENT 

Level repulsion in the spectrum of two-dimensional harmonic 
oscillators 

A Pandey'i$Q, 0 Bohigad  and  M J Giannonii: 
+ Department of Physics and Astronomy, University of Rochester, Rochester, N Y  14627, 
USA 
$ Division d e  Physique ThCoriquel', lnstitut de  Physique Nucleaire, 91406 Orsay Cedex, 
France 

Received 22 May 1989 

Abstract. The asymptotic-energy limit of the density P ( S )  of spacings between adjacent 
levels of the two-dimensional harmonic oscillator ( T D H O )  spectrum is studied. I t  is shown 
that in any integer segment [ M ,  M +  11, containing - h f / a  levels, of the TDHO spectrum 
m + an, P ( S )  has the form 1 w , S ( S  - S,) where i takes on at most three values. For large 
M ,  P ( S )  displays strong level repulsion for irrational a, but i t  does not settle on a stationary 
form nor does its average over M .  This is in marked contrast with the behaviour of generic 
integrable systems for which the Poisson statistics, P ( S )  = exp( -S ) ,  is known to apply. 

In recent years the energy level fluctuations (i.e. departures from uniformity) in the 
spectra of bound systems with more than one degree of freedom have been studied 
extensively. The underlying belief [ 11 is that the fluctuations at asymptotic energies 
should depend on whether the corresponding classical motion is integrable or chaotic. 
The proposition [ 1 , 2 ]  is that in the integrable case the levels are distributed randomly 
as a Poisson process, whereas in the chaotic case they follow, as in complex nuclear 
spectra, the eigenvalue distribution of certain random matrices. However, the simplest 
integrable systems, namely harmonic oscillators, provide the major exception [ 11. The 
purpose of this comment is to give exact analytic results for the system of two- 
dimensional harmonic oscillators (TDHO).  

For chaotic systems, recent studies [2] show that the spectrum is a rather rigid one, 
having small fluctuations. The rigidity has short-range features (repulsion among 
neighbouring levels) as well as long-range (significant correlation among distant levels). 
The standard random-matrix model for such systems with time-reversal invariance is 
the Gaussian orthogonal ensemble of real symmetric matrices and, without invariance, 
the Gaussian unitary ensemble of complex Hermitian matrices. For integrable systems 
Berry and Tabor [ l ]  have shown that the Poisson results apply in the generic case 
where the energy contours in action space are curved. They also observed that the 
harmonic oscillators are non-generic (with flat energy contours) and have anomalous 
fluctuations. Their numerical experiments demonstrated that, when the frequencies 
are incommensurable, the spectrum displays strong level repulsion, similar qualitatively 
to the chaotic case and contrasting sharply with the level clustering of the generic 
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integrable case. The present study of the TDHO spectrum pursues their suggestion that 
the source of level repulsion may lie in the nature of the best rational approximations 
of the frequency ratio which are given by its simple continued fraction 131 (SCF).  The 
derivations are rather involved and will be given elsewhere; but the final results provide 
a pleasing picture which we present here. 

Without loss of generality, we write the TDHO levels as E,,,,, = m + an  where m, 
n = 0,  1,2 ,  . . . , and CY ( > O )  is the frequency ratio. (A rational a allows degenerate 
levels because m + an = ( m  i p )  + a (  n q )  for a = p / q  with p ,  q relative primes, but 
an  irrational a does not.) Consider the unit-length segment of this spectrum contained 
in [ M,  M + 11, with M an  integer, including the end points; in case of degeneracies 
only one level ( m  = M + 1, n = 0) at the upper end is included; thus adjacent segments 
contain one level in common, ensuring a complete counting of the nearest-neighbour 
spacings. Let us use the notation that In t (X)  is the largest integer S X  and Frac(X) = 
X - In t (X)  = X (mod 1). Then the segment contains a total of ( N  + 1) levels with 
average spacing N-' where N = -Int(-(M+ l ) / a )  = M / a ;  in other words the average 
level density increases linearly with energy ( p , , ( E )  = E / C Y  for large E ) .  It is also easy 
to show that the levels are located at M + xi'" where 

Frac( na ) n = 0,1,  . . . , N - 1 
1 n = N. 

Ignoring the constant M, we refer to the x'") as the levels of the segment and denote 
the corresponding ordered spectrum by { x I }  where 0 = x 0 s  x, <.  . . s x ~ - ~  < x\, = 1. 
The spectrum is constructed below explicitly by finding the (integer) ordering function 
XI ,  defined, for 0 s  I < N and 0 s XI < N, by xr = Frac(X,a). 

We find that, for given N, the ordering function is the same for a range of a values 
and the range is such that, when a varies, the level motion is strongly correlated. A 
remarkable aspect of this level correlation is that there are at most three distinct 
nearest-neighbour spacings for any CY, rational or irrational, and for any N 3 1. 

This result follows easily for rational a = p / q  when N 3 q. For, in this case the 
x ( ~ )  are integer multiples of q-I,  and x(") - - x ' " ' I  if and only if n - n' = 0 (mod q ) .  Thus 
the spectrum is uniformly spaced (one distinct spacing) when N = q, and the same 
with degeneracies (two distinct spacings) when N > q. The spacing density P N ( S )  of 
the segment, normalised to unit integral and unit average spacing, is given as 

where the last form does not give the correct average spacing but emphasises the 
dominance of degeneracies at asymptotic energies. For other n values and other (Y 

values the three-spacing result can be guessed easily from numerical experiments, for 
example by realising the segment on a circle of unit length where x(O) and xiN) coincide 
(xi")= ( 2 ~ ) - '  exp(2~ncui )  for n = 0, 1,. . . , N - 1; see figure 1). 

For a rigorous derivation, consider the SCF of a :  

1 

a, +- 
a =a,+ 

1 
a z + .  . . 

=[a, ;  al7. * * 9 ah, r k - l l  
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Figure 1. The x"" sequence, realised on a circle, for n = 0: 1,. . . , 9  and (Y = ("5- 1)/2. 

where ak = Int(r,) is the kth ( k  3 0) element of the SCF and rk = [ a k  ; a h + l ,  . . .] 
the kth remainder, such that a, > 0 for k > 0. Its kth convergent is a rational fraction, 
given by p k / q k  = [a,; a , ,  . . . , ak] where P k  and q k ,  relative primes, can be obtained 
recursively from p ,  = akpk-1 + p k P 2  and = a k q k _ l +  qk-2 with p - l  = 1, q-l = 0, p o =  a, 
and qo= 1. The convergents provide an alternating sequence of lower and upper 
bounds on  a, and are the best rational approximations to a in the sense that lad - C I  
is a minimum whenever the rational c / d  is equal to a convergent [3]; the minimum 
values are given by 

1 <-, k 1 
t k  = (-1) (aq,  - p k )  = 

q k - l +  qkrhfl q k + 1  
(4) 

The intermediate fractions [3] ( p k - l  + r p k ) / ( q h - l  + rq,)  = [a,; a , ,  . . . , U,, r ] ,  for r = 1, 
2 , .  . . , a k + l -  1, which form a montonic sequence between P k -  ) / q A - l  (i.e. r = 0) and 
p k + l / q k + l  (i.e. r = also provide approximations to a (though not the best ones 
in the sense defined above); in this case the errors are determined by 

;A ( r ,  = (-1 ) ' + I (  a ( q h -  1 + rqh) - (PA-  I + rph 1) = (rk+ I - r )  h ( 5 )  

valid for r = 0 ,  a h f l  also. 
Now let us write N = q&l+ rq, + s where k 2 0 , l s  r s ah+l  and 0 s s < 91, obtaining 

a unique representation of N in terms of the integers k, r and s. We find then that X ,  
is given, for 0 s  1 < N, by 

( 6 )  = (-1 ) & ( A / q k  - p/(qh- I + rqh - q h -  I + ( r  - 1 ) q h  1. 
Here A, ,  p/ and v, are non-negative integer functions of N whose sum is 1, and which 
are non-decreasing with I :  O = A o S A I S . . . S A N - l ~ A N  = ( N - q l , ) ,  O = p o < p , S . . . 6  
p N - l  s p N  = s, 0 = v 0 s  vl  s .  . . s v N - ]  6 v W  = ( q A  - s); i.e. as 1 increases by unity, only 
one  of the increments, - A / ) ,  ( P , + ~  - p,) and ( vi+l - v/), becomes unity while the 
other two remain zero. The definition is completed by requiring that the unit increments 
in A /  and  p, take priority over that in vl, such that, after the increment, the expression 
in (6) satisfies OsX,+l  < N. Thus ( X I + ,  -X , )  is either (-1)'q' or ( - l ) h + l ( q k - l + r q k )  
o r  ( - l ) k " ( q k - l + ( r - l ) q n ) ,  and acquires no other value. The I =  N case does not 
apply to X,-mere substitution yields X k  =0-but it does to x, in (7) below, where 
x N  = 1. Equations (4)-(6), along with the definition of X I ,  yield the ordered spectrum 
as 

xI = Al lk  + p, I, ( r ) + v, ik ( r - 1 ) (7) 
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with O S  I <  N. Remarkably, (6),  (7) are valid for all a = ( pk- l  + 7ph)/(qk-1 + vqA) = 
[ a o ;  a , ,  . . . , ah ,  771 where 77 2 r if b e  replace r h t l  by 7 in ti, and rh of (4), (5);  thus 
alternative expressions for A I ,  p I  and vI can be given in terms of the spectrum for 
special values of 7, i n  particular 77 = r +  1.  We remark also that (7) can be used to 
rederive the familiar result that when cy is irrational the xi") f i l l  the segment densely 
and uniformly. 

The nearest-neighour spacing ( X , - ~ - X , )  is either ti, or r k ( r )  or F h ( r - l ) =  f k ( r ) + f i , ,  
which occur A N ,  p h  and vN times respectively and, of the three, the smallest spacing 
is t h  when r < a k + , ,  and r A ( r )  when r = a h + , .  Thus the spacing density P,(S) is given 

NP, (S ;  c y )  = ( N  - q h ) S ( S  - N t k ) +  s6(S - N r k ( r ) )  + ( q h  - s)6(S - Nrh( r - 1)). (8) 

As a trivial example, we have P , ( S )  = 6 ( S  - 1 )  for N = 1. As a non-trivial example we 
obtain ( 2 ) ,  because, in this case, qh = q, tk  = 0, and Tk(r) = r k ( r  - 1) = q- ' .  In all other 
cases we have three distinct spacings, but with zero weight for one of them when s = 0 
(or 41) .  In particular, for irrational cy the distinct spacings as well as their weights do  
not approach a limit as N + CO, showing that at asymptotic energies the segment does 
not have a stationary spacing distribution. Moreover, the spacing density I ' ( S )  of the 
segment [ M,,, , M,,, + 11, I'( S )  = 2 NPk (S ) /C  N where N takes on appropriately 
chosen values such that all values of M between M,,, a",, and M,,, = aN,,, are 
realised, also does not have a proper limit as M,,, + CO, changing continually from 
one pattern to another without settling on a stationary form as the energy M,,, increases. 

In  general P ( S )  for large M,,, depends on three parameters, L, p and E ,  defined, 
as above, by N,,,- qL- l+pqL+sqL  where p takes on integer values between 1 and 
a L + l ,  and E varies continuously between 0 and 1 for large L. As a consequence of 
taking E as a continuous variable, we end up for p (  S) with a relatively smooth density 
rather than a sum of 6 functions. Simplifications occur when cy is a quadratic irrational 
(root of a quadratic equation with integer coefficients). In this case the aL  sequence 
is periodic for large L, so that P ( S )  as a function of L is also periodic for large L 
(and hence recurrent as a function of M,, , ) ,  the period being the same as that of a L .  
When the period is unity, i.e. aL  + a (an integer >0)  for large L, the L +  CO limit exists. 
We find, in terms of the other two parameters, that 

by 

P ( S ;  E ,  p )  = ( @ ( E ,  p ) ) - ' [ P , , ( s ;  1,  a ) +  ( y 2 -  1 ) R d s ;  E,  PI1 
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s,<s<s, 
h ( S ;  SI, S,) = f S = S, or S2 6 S < S ,  or S > S 2  

@ ( E ,  p )  = ( y - ’ + i ) a  + f a ( a  + 1) + ( y ’ -  I )  

r ~ y ( ~ ) = t [ a + ( a ~ + 4 ) ” ~ ] = [ a ;  a, a , .  . .I. 
Note that p ( S ;  1, p )  = p ( S ;  0, p(mod a )  + 1). See figure 2 for illustrations of (9) with 
a = 1,2. 

It is easily seen from (9) that the non-zero values of P (  S) occur for S > ( a 2  + 4)-”*. 
This implies strong level repulsion in the spectrum, the strongest being obtained for 
a = 1. Other irrational a values also exhibit level repulsion, which is strongest when 
poorest rational approximations to a occur. Other fluctuation measures have not been 
analysed in detail. But the essential conclusions for the irrational case are the same: 
no stationary statistics at  asymptotic energies and, in general, strong spectral rigidity 
of the short-range as well as long-range kind. 

In conclusion, we stress again that the TDHO spectrum is very different from the 
spectrum of a generic integrable system as well as of a chaotic system because of the 
existence of at most three distinct spacings in unit-length segments. Fluctuation 
properties at asymptotic energies d o  not settle on a stationary behaviour. However, 
the irrational TDHO does exhibit level repulsion which in general is much stronger than 

x [ ( y -  I +  f ) (  p - 1) + + p (  p - 1) + ( y - ’  + p )  E + f F 2 ]  

(9) 

0 1.2 2.4 

2.0 

1 .o 

2.0 

1.0 

2.0 

1.0 

2.0 

1 .o 

0 

Figure 2. P ( S ;  E ,  p )  of ( 9 )  plotted as  against S for U = 1 ,  2, applying, for example,  for 
cy = ( ~ , 5  - 1 ) / 2  = [O;  1, I , .  . .] and U = I / \ ’?= [ O ;  I ,  2 . .  . .] respectively. Each box gi\,es 
( u , p ,  E )  in its upper  right corner.  As an  application, consider the first 5000 levels of 
cy = l/\/?, corresponding to L = 5 ,  p = 2 and F -0.5; even though L is small, the histogram 
of P(S1 for ( 2 , 2 , 0 . 5 )  is found to agree extremely well with figure 5 ( u )  of [ l ] .  

- 



4088 A Pandey, 0 Bohigas and M J Giannoni 

that in the chaotic case. The anomalous fluctuations in higher dimensions are not 
known, but one would expect non-stationarity and level repulsion to extend. 
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